

Automating Governance
A Managed Service Approach to Security and Compliance on AWS

August 2015

Amazon Web Services – Automating Governance on AWS August 2015

Page 2 of 39

© 2015, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices

This document is provided for informational purposes only. It represents AWS’s

current product offerings and practices as of the date of issue of this document,

which are subject to change without notice. Customers are responsible for

making their own independent assessment of the information in this document

and any use of AWS’s products or services, each of which is provided “as is”

without warranty of any kind, whether express or implied. This document does

not create any warranties, representations, contractual commitments, conditions

or assurances from AWS, its affiliates, suppliers or licensors. The responsibilities

and liabilities of AWS to its customers are controlled by AWS agreements, and

this document is not part of, nor does it modify, any agreement between AWS

and its customers.

Amazon Web Services – Automating Governance on AWS August 2015

Page 3 of 39

Contents
Abstract 4

Introduction 4

Shared Responsibility Environment 6

Compliance Requirements 7

Compliance and Governance 8

Challenges in Architecting for Governance 9

Implementing a Managed Services Organization 10

Standardizing Architecture for Compliance 14

Architectural Baselines 14

The Shared Services VPC 18

Automating for Compliance 20

Automating Compliance for EC2 Instances 23

Development & Management 25

Deployment 28

Automating for Governance: High-Level Steps 33

Step 1: Define Common Use Cases 34

Step 2: Create and Document Reference Architectures 35

Step 3: Validate and Document Architecture Compliance 35

Step 4: Build Automated Solutions Based on Architecture 36

Step 5: Develop an Accreditation and Approval Process 37

Conclusion 37

Contributors 38

Notes 38

Amazon Web Services – Automating Governance on AWS August 2015

Page 4 of 39

Abstract

This whitepaper is intended for existing and potential Amazon Web Services

(AWS) customers who are implementing security controls for applications

running on AWS. It provides guidelines for developing and implementing a

managed service approach to deploying applications in AWS. The guidelines

described provide enterprise customers with greater control over their

applications while accelerating the process of deploying, authorizing, and

monitoring these applications.

This paper is targeted at IT decision makers and security personnel and assumes

familiarity with basic networking, operating system, data encryption, and

operational control security practices.

Introduction

Governance encompasses an organization’s mission, long-term goals,

responsibilities, and decision making. Gartner describes governance as “the

processes that ensure the effective and efficient use of IT in enabling an

organization to achieve its goals”1. An effective governance strategy defines both

the frameworks for achieving goals and the decision makers who create them:

 Frameworks – The policies, principles, and guidelines that drive consistent

IT decision making.

 Decision makers – The entities or individuals who are responsible and

accountable for IT decisions.

Well-developed frameworks ultimately can yield an efficient, secure, and

compliant technology environment. This paper describes how to develop and

automate these frameworks by introducing the following concepts and practices:

 A managed service organization (MSO) that is part of a centralized cloud

governance model

 Roles and responsibilities of the MSO on the customer side of the AWS

shared responsibility model

Amazon Web Services – Automating Governance on AWS August 2015

Page 5 of 39

 Shared services and the use of Amazon Virtual Private Cloud (Amazon

VPC) within AWS

 Architectural baselines for establishing minimum configuration

requirements for applications being deployed in AWS

 Automation methods that can facilitate application deployment and

simplify compliance accreditation

https://aws.amazon.com/vpc/

Amazon Web Services – Automating Governance on AWS August 2015

Page 6 of 39

Shared Responsibility Environment

Moving IT infrastructure to services in AWS creates a model of shared

responsibility between the customer and AWS. This shared model helps relieve

the operational burden on the customer because AWS operates, manages, and

controls the IT components from the host operating system and virtualization

layer down to the physical security of the facilities in which the services operate.

The customer assumes responsibility for and management of the guest operating

system (including responsibility for updates and security patches) and other

associated application software, and the configuration of the AWS-provided

security group firewall. Customers must carefully consider the services they

choose because their responsibilities vary depending on the services they use, the

integration of those services into their IT environment, and applicable laws and

regulations.

Figure 1: The AWS Shared Responsibility Model

Amazon Web Services – Automating Governance on AWS August 2015

Page 7 of 39

This customer/AWS shared responsibility model also extends to IT controls. Just

as AWS and its customers share the responsibility for operating the IT

environment, they also share the management, operation, and verification of IT

controls. AWS can help relieve the customer of the burden of operating controls by

managing those controls associated with the physical infrastructure deployed in

the AWS environment that might previously have been managed by the customer.

Customers can shift the management of certain IT controls to AWS, which results

in a (new) distributed control environment. Customers can then use the AWS

control and compliance documentation to perform their control evaluation and

verification procedures as required under the applicable compliance standard.

Compliance Requirements
The infrastructure and services provided by AWS are approved to operate under

several compliance standards and industry certifications. These certifications

cover only the AWS side of the shared responsibility model; customers retain the

responsibility for certifying and accrediting workloads that are deployed on top of

the AWS-provided services that they run.

The following common compliance standards have unique requirements that

customers must consider:

 NIST SP 800-532–Published by the National Institute of Standards in

Technology (NIST), NIST SP 800-53 is a catalog of security controls which

most U.S. federal agencies must comply with and which are widely used

within private sector enterprises. Provides a risk management framework

that adheres to the Federal Information Processing Standard (FIPS).

 FedRAMP3–A U.S. government program for ensuring standards in

security assessment, authorization, and continuous monitoring. FedRAMP

follows the NIST 800-53 security control standards.

 DoD Cloud Security Model (CSM)4–Standards for cloud computing

issued by the U.S. Defense Information Systems Agency (DISA) and

documented in the Department of Defense (DoD) Security Requirements

Guide (SRG). Provides an authorization process for DoD workload owners

who have unique architectural requirements depending on impact level.

Amazon Web Services – Automating Governance on AWS August 2015

Page 8 of 39

 HIPAA5 – The Health Insurance Portability and Accountability Act

(HIPAA) contains strict security and compliance standards for

organizations processing or storing Protected Health Information (PHI).

 ISO 270016 – ISO 27001 is a widely adopted global security standard that

outlines the requirements for information security management systems. It

provides a systematic approach to managing company and customer

information that’s based on periodic risk assessments.

 PCI DSS7 – Payment Card Industry (PCI) Data Security Standards (DSS)

are strict security standards for preventing fraud and protecting cardholder

data for merchants that process credit card payments.

Evaluating systems in the cloud can be a challenge unless there are architectural

standards that align with compliance requirements. These architectural

standards are especially critical for customers who must prove their systems meet

strict compliance standards before they are permitted to go into production.

Compliance and Governance
AWS customers are required to continue to maintain adequate governance over

the entire IT control environment regardless of whether it is deployed in a

traditional data center or in the cloud. Leading governance practices include:

 Understanding required compliance objectives and requirements (from

relevant sources)

 Establishing a control environment that meets those objectives and

requirements

 Understanding the validation required, based on the organization’s risk

tolerance

 Verifying the operational effectiveness of the control environment

Deployment in the AWS cloud gives organizations options to apply various types

of controls and verification methods.

Workload owners can follow these basic steps to ensure strong governance and

compliance:

1. Review information from AWS and other sources to understand the entire

IT environment.

Amazon Web Services – Automating Governance on AWS August 2015

Page 9 of 39

2. Document all compliance requirements.

3. Design and implement control objectives to meet the organization’s

compliance requirements.

4. Identify and document controls owned by outside parties.

5. Verify that all control objectives are met and all key controls are designed

and operating effectively.

Approaching compliance governance in this manner will help customers gain a

better understanding of their control environment and help clearly define the

verification activities that must be performed.

For more information on governance in the cloud, see Security at Scale:

Governance in AWS8.

Challenges in Architecting for Governance
AWS provides a high level of flexibility in how customers can design architectures

for their applications in the cloud. AWS has documented best practices in the

whitepapers, user guides, API references, and other resources that describe how

to design for elasticity, availability, and security. But these resources alone do not

prevent bad design and improper configuration. Architectural decisions that

impact security can put customer data or personal information at risk and create

liability.

Consider the following challenges:

 Building a single workload with different architecture choices that is still

compliant

 The need to individually assess each of these unique architectures

 The high level of flexibility leaves room for error, and serious mistakes can

be resolved only by redeployment of the application

 Security analysts may not understand the differences between the many

architectural decisions

http://media.amazonwebservices.com/AWS_Security_at_Scale_Governance_in_AWS.pdf
http://media.amazonwebservices.com/AWS_Security_at_Scale_Governance_in_AWS.pdf
http://media.amazonwebservices.com/AWS_Security_at_Scale_Governance_in_AWS.pdf

Amazon Web Services – Automating Governance on AWS August 2015

Page 10 of 39

Learning Curve

By deploying applications in AWS, workload owners and developers have a much

greater level of control over and access to resources beyond the operating system

and software. However, the number of decisions required when building an

architecture can be overwhelming for those new to AWS. Some of these

architectural decisions include how to address:

 Amazon VPC structure and network controls

 AWS Identity and Access Management (IAM) configuration, policies,

permissions; Amazon Simple Storage Service (S3) bucket policies

 Storage and database options

 Load balancing

 Monitoring options, alerts, tagging

 Aggregation, analysis, and storage considerations for logging produced by a

workload or AWS service

Implementing a Managed Services Organization
To implement governance, AWS customers have begun establishing centralized

teams within their organizations that facilitate the migration of legacy

applications and the development of new applications. Such a team can be called

a provisioning team, a center of excellence, a broker, and, most commonly, the

managed service organization (MSO), which is the term we use. Customers use

an MSO to establish repeatable processes and templates for deploying

applications to AWS while maintaining organizational control over their

enterprise’s applications. When the MSO function is outsourced, it is generally

referred to as a managed service partner (MSP). Many MSPs are validated by

AWS under our Managed Service Program.9

Understanding the enterprise’s cloud governance model is key to determining the

provisioning strategy for accounts, Amazon VPCs, and applications, and for

deciding how to automate these processes. Large enterprises generally centrally

manage cloud operations at some level. It is important to find the optimal

balance between central management and decentralized control.10

Amazon Web Services – Automating Governance on AWS August 2015

Page 11 of 39

In a centralized governance model, an MSO provides the minimum requirements

for workload owners who are deploying applications in the cloud:

 Guardrails for security, data protection, and disaster recovery

 Shared services for security, continuous monitoring, connectivity, and

authentication

 Auditing the deployments of workload owners to ensure adherence to

security and compliance standards

For most large enterprises, there are typically two sets of cloud governance roles

involved in the deployment of applications:

 MSO – As previously mentioned, a component of centralized cloud

governance; responsibilities can include account provisioning,

establishment of connectivity and Amazon VPC networking, security

auditing, hosting of shared services, billing and cost management.

 Workload Owners – Those who are directly responsible for the

deployment, development, and maintenance of applications; a workload

owner can be a cost center or a department and may include system

administrators, developers, and others directly responsible directly for one

or more applications.

Enterprise customers establish an MSO when there are common functions that

can be centralized to ensure that applications are deployed in a secure and

compliant fashion. The MSO can also accelerate the rate of migration through

reuse of approved configurations, which minimizes development and approval

time while ensuring compliance through the automated implementation of

organizational security requirements.

Amazon Web Services – Automating Governance on AWS August 2015

Page 12 of 39

Figure 2: Shared Responsibility Between the CSP, the MSO, and the Workload

Owner

Adding an MSO allows the authorization documentation of the workload owner

to be scoped down to only the configuration and installation of software specific

to a particular application, because the workload owner inherits a significant

portion of the security control implementation from AWS and the organization’s

MSO. Establishing an MSO requires some up front work, but this investment

provides enhanced control over applications, increased speed to deployment,

decreased time to authorization, and overall enhancement of the enterprise’s

security posture.

Common Activities of the MSO

MSOs implemented by AWS customers often perform the following activities:

 Account provisioning. After reviewing the workload owner’s use case,

the MSO establishes the initial account, connects it to the appropriate

account for consolidated billing, and configures basic security functionality

prior to granting access to the workload owner.

Amazon Web Services – Automating Governance on AWS August 2015

Page 13 of 39

 Security oversight. Centralized account provisioning allows the MSO to

implement features that enable security personnel to monitor the

application as it is deployed and managed; the MSO might perform

activities such as establishing an auditor group with cross-account access

and linking the application VPC to a shared services VPC that is controlled

by the MSO.

 Amazon VPC configuration. Deploying the VPC and its subnets,

including configuring security groups and network ACLs. To maintain

tighter control over the application VPCs, the MSO may retain control of

VPC configuration and require the workload owner to request desired

changes to network security.

 IAM configuration. Creating user groups and assignment of rights,

including creation of groups for internal auditors, an IAM superuser, and

application administrative groups segregated by functionality (e.g.,

database and Unix administrators).

 Development and approval of templates. Creating preapproved AWS

CloudFormation templates for common use cases. Using templates allows

workload owners to inherit the security implementation of the approved

template, thereby limiting their authorization documentation to the

features that are unique to their application. Templates can be reused to

shorten the time required to approve and deploy new applications.

 AMI creation and management. Creating a library of common,

approved Amazon Machine Images (AMIs) for the organization, allowing

centralized management and updating of machine images. Creating

common templates allows the MSO to enforce the use of approved AMIs.

 Development of a shared services VPC. A shared service VPC allows

the MSO to receive continuous monitoring feeds from the organization’s

application VPC and to provide common, shared services that are required

for their organization. This often includes a shared access management

platform, logging endpoints, and the aggregation of configuration

information.

Amazon Web Services – Automating Governance on AWS August 2015

Page 14 of 39

Standardizing Architecture for Compliance

The solution to the challenge of implementing security controls for applications

running on AWS is to build standardized, automated, and repeatable

architectures that can be deployed for common use cases. Automation can help

customers easily meet the foundational requirements for building a secure

application in the AWS cloud, while providing a level of uniformity that follows

proven best practices.

Architectural Baselines
To determine the best method for standardizing and automating architecture in

AWS, establish baseline requirements up front. These are the minimum common

requirements to which most (or all) workloads must adhere. An enterprise’s

baseline requirements normally follow pre-existing compliance controls,

regulatory guidelines, security standards, and best practices. Typically, a central

department or group of individuals who are also involved in the monitoring,

auditing, and evaluation of systems that are being deployed establish standard

architectures based upon their baseline compliance and operational

requirements.

Standard architectures can be shared among multiple applications and use cases

within an organization. This provides efficiency and uniformity, and reduces the

time and effort spent in designing architectures for new applications on AWS. In

an organization with a centralized cloud model, these standard architectures are

deployed during the account provisioning or application onboarding process.

Access Control/IAM Configuration

IAM is central to securely controlling access to AWS resources. Administrators

can create users, groups, and roles with specific access policies to control which

actions users and applications can perform through the AWS Management

Console or AWS API. Federation allows IAM roles to be mapped to permissions

from central directory services.

The enterprise should determine how to implement the following IAM controls:

 Standard users, groups, or both that will exist in every account

Amazon Web Services – Automating Governance on AWS August 2015

Page 15 of 39

 Cross-account roles or federated roles

 Roles for EC2 instances and application access to the AWS API

 Roles requiring access to S3 buckets and other shared resources

 Security requirements, such as password policies and multi-factor

authentication (MFA)

Networking/VPC Configuration

Network boundaries and components are critical to deploying a secure

architecture in the cloud. An Amazon VPC is a logically isolated section of the

AWS cloud which can be configured to enforce these network boundaries. An

AWS account can have one or more Amazon VPCs. Subnets are logical groupings

of IP address space within an Amazon VPC and exist within a single Availability

Zone (AZ).

A VPC strategy depends on the requirements of a common use case. Amazon

VPCs can be designated based on application lifecycle (production, development)

or on role (management, shared services). A well-documented Amazon VPC

strategy will also take into account:

 The number of Amazon VPCs per AWS account

 The subnet structure within an Amazon VPC: the number of subnets and

routing capabilities of each subnet

 High availability requirements: Amazon VPC subnets across availability

zones (AZs)

 Connectivity options: internet gateways, virtual private gateways, and

routing

AWS provides the components necessary for controlling the network boundaries

of an application in an Amazon VPC. The following table lists examples of

Amazon VPC networking controls that can be utilized in AWS.

Control Implementation Protection Provided

VPC Routing Tables Control which VPC subnets may

communicate directly with the Internet

Provides segmentation and broad

reduction of attack surface area per

subnet

VPC Network Subnet-level, all traffic allowed by Provides blacklist protection for ports

Amazon Web Services – Automating Governance on AWS August 2015

Page 15 of 39

Access Control

Lists (NACLs)

default, stateless filtering designed and

implemented across one or more VPC

subnets

and protocols with security concerns,

such as TFTP and NetBIOS

VPC Security

Group(s)

Hypervisor-level, all inbound

connections denied by default, stateful

filtering designed for one or more

instances

Provides whitelist abilities for ingress

and egress traffic, opening services and

protocols required by the instance and

applications

Host-based

Protection

Customer-selected software to provide

intrusion detection and prevention, and

firewall and/or logging capabilities.

Depending on product implemented, can

provide scalable protection and detection

capabilities and security behavior

visibility across your virtual fleet

Because VPC networking configuration is critical to ensure the confidentiality,

integrity, and availability of an application, enterprises should define standards

that adhere to security and AWS best practices. MSOs should follow these

standards, or in the case of decentralized deployment, workload owners should

have a blueprint to follow when building a VPC structure.

Resource Tagging

Almost all AWS resources allow the addition of user-defined tags. These tags are

metadata and are irrelevant to the functionality of the resource, but are critical

for cost management and access control. When multiple groups of users or

multiple workload owners exist within the same AWS account, restricting access

to resources based on tagging is important.

Regardless account structure, tag-based IAM policies can be used to place extra

security restrictions on critical resources. The following example of an IAM policy

specifies a condition that restricts an IAM user to changing the state of an EC2

instance that has the resource tag of “project = 12345”.

{

"Version": "2012-10-17",

"Statement": [

{

"Action": [

"ec2:StopInstances",

Amazon Web Services – Automating Governance on AWS August 2015

Page 16 of 39

AWS recommends the following to effectively use resource tagging:

 Establish tagging baselines that define common keys and expected values

across all accounts.

 Implement tag enforcement through both auditing and automation

methods.

 Use automated deployment with AWS CloudFormation to automatically

tag resources.

AMI Configuration

Organizations commonly ensure security and compliance by centrally providing

workload owners with pre-built Amazon Machine Images (AMIs). These “golden”

AMIs can be preconfigured with host-based security software and be hardened

based on predetermined security guidelines. Workload owners and developers

can then use the AMIs as starting images on which to install their own software

and configuration, knowing the images are already compliant.

Note that managing centrally distributed AMIs can be an involved task for any

central team. Do not customize software and configuration, which are likely to

"ec2:RebootInstances",

"ec2:TerminateInstances"

],

"Condition": {

"StringEquals": {

"ec2:ResourceTag/project":"12345"

}

},

"Resource": [

"arn:aws:ec2:your_region:your_account_ID:instance/*"

],

"Effect": "Allow"

}

]

}

Amazon Web Services – Automating Governance on AWS August 2015

Page 17 of 39

change frequently, in an AMI; instead configure them by using Amazon Elastic

Compute Cloud (Amazon EC2) user data scripts or automation tools, such as

Chef, Puppet, or AWS OpsWorks.

Figure 3: Differences Between Fully-Cconfigured and Base AMIs

Figure 3 shows how preconfigured AMIs can be used through automation and

policy as the standard to control which new EC2 instances are deployed by

workload owners. Building AMIs can be partially automated by using tools such

as Aminator and Packer.11

Continuous Monitoring

Continuous monitoring is the proactive approach of identifying risk and

compliance issues by accurately tracking and monitoring system activity. Certain

compliance standards, such as NIST SP 800-53, require continuous monitoring

to meet specific security controls. AWS includes several services and native

capabilities that can facilitate a continuous monitoring solution in the cloud.

AWS CloudTrail

AWS CloudTrail is a service that logs API activity within an AWS account and

delivers these logs to an Amazon Simple Storage Service (Amazon S3) bucket.

This data can be analyzed with third-party tools, such as Splunk, Alert Logic, or

CloudCheckr.12 As a security standard, CloudTrail should be enabled on all

accounts and should log to a bucket that is accessible by security tools and

applications.

Amazon Web Services – Automating Governance on AWS August 2015

Page 18 of 39

Amazon CloudWatch Alarms

Amazon CloudWatch alarms notify users and applications when events related to

AWS resources occur. For example, the failure of an instance can trigger an

alarm to send an Amazon Simple Notification Service (Amazon SNS) notification

by email to a group of users. You can create common alarms for metrics and

events within an account that must be monitored.

Centralized Logging

In AWS, application logs can be centralized for analysis by security tools. This

can be simplified by using Amazon CloudWatch Logs. CloudWatch Logs provides

an agent, which can be configured to send application log data directly to

CloudWatch. Metric filters can then be used to track certain events and activity at

the OS and application levels.

Notifications

Amazon SNS can be used to send email or SMS-based notifications to

administrative and security staff. Within an AWS account, you can create

Amazon SNS topics to which applications and AWS CloudFormation

deployments can publish. These push notifications can automatically be sent to

individuals or groups within the organization who need to be notified of Amazon

CloudWatch alarms, resource deployments, or other activity published by

applications to Amazon SNS.

AWS Config

AWS Config is a service that provides you with an AWS resource inventory, a

configuration history, and configuration change notifications, all of which enable

security and governance.13 AWS Config allows detailed tracking and notification

whenever a resource in an AWS account is created, modified, or deleted.

The Shared Services VPC
Our enterprise customers have found that establishing a single Amazon VPC that

contains security applications required for monitoring their applications

simplifies centralized control of infrastructure and provides easier access to

common features, such as Network Time Protocol (NTP) servers, directory

services, and certificate management repositories.

Amazon Web Services – Automating Governance on AWS August 2015

Page 19 of 39

Figure 4: A Sample Shared-Service Amazon VPC Approach for DoD Customers

Figure 4 provides an example of a shared service VPC approach used by a DoD

MSO that establishes two VPCs for use by all of their applications. In the first

VPC, the MSO established a VPC dedicated to providing a web application

firewall that screens all traffic for known attack patterns, creates a single point for

monitoring web traffic, and yet does not create a single-point of failure due to its

ability to scale with traffic. In the second VPC, the MSO hosts a variety of

common services, including Active Directory servers, DNS servers, NTP servers,

Host-Based Security System (HBSS) ePolicy Orchestrator (ePO) rollup servers,

and a master Assured Compliance Assessment Solution (ACAS) Security Center

server.

Each organization must determine the common services that they must host in

their AWS environment to support the needs of workload owners.

Amazon Web Services – Automating Governance on AWS August 2015

Page 20 of 39

Automating for Compliance

Any customer can create pre-built and customizable reference architectures with

the tools AWS provides, although it does require a level of effort and expertise.

Automation Methods

AWS CloudFormation is the core of AWS infrastructure automation. The service

allows you to automatically deploy complete architectures by using pre-built

JSON-formatted template files. The set of resources created by an AWS

CloudFormation template is referred to as a “stack.”

Modular Design for Compliance Automation

When building enterprise-wide AWS CloudFormation templates to automate

compliance, we recommend that you use a modular design. Use separate stacks

based on the commonality of configuration among applications. This can

automate and enforce the baseline standards for security and compliance

described in the previous sections.

Figure 5 shows how a customer can develop and maintain AWS CloudFormation

templates using a modular design. A single workload would use one template

from each of these stacks nested in a single template to deploy and configure an

entire application.

Amazon Web Services – Automating Governance on AWS August 2015

Page 21 of 39

Figure 5: AWS CloudFormation Stacks

Stack 1 – Stack 1 is the primary security template applied to each account; it

deploys common IAM users, roles, groups, and associated policies.

Stack 2 – Generally, there will be a template for each common use case to deploy

the associated VPC architecture; this can take into account connectivity options

such as VPC peering, NAT instances, internet, and virtual private gateways.

Stack 3 – There is a template for each common configuration of an application

architecture. They contain application-related components that are common

among multiple applications, but distinct among use cases, such as elastic load

balancers, Elastic Load Balancing SSL configuration, common security groups,

and common S3 buckets.

Stack 4 – There is a template for each specific application that deploys the

associated EC2 instances, autoscaling groups, and other instance-level resources.

In this stack, instances can be bootstrapped with required user data and other

resources, such as application-specific security groups, can be created.

Use Case Packages

Building templates in this manner allows you to reuse configurations. For

specific use cases and application types, you can use “packages” that consist of

Amazon Web Services – Automating Governance on AWS August 2015

Page 22 of 39

multiple templates nested within a single main template to deploy an entire

architecture, as shown in Figure 6.

Figure 6: Example Package That Includes IAM Base Configuration, VPC

Architecture 1, Application Architecture 2, and APP2 Template

An organization with a decentralized cloud governance model can use this

automation structure to establish “blueprint” architectures and allow workload

owners full control of deployment at all levels. In contrast, an organization with a

centralized cloud team that is responsible for provisioning might allow workload

owners to provision only the application-level components of the architecture

while retaining responsibility for initial account provisioning, IAM controls, and

Amazon VPC configuration.

To successfully build templates to automate compliance:

 Keep templates modular; use nested stacks when possible

 Use parameters as much as necessary to ensure flexibility

 Use the DependsOn attribute and wait conditions to prevent dependency

issues when resources are deployed

 Develop a version control process to maintain template packages

Amazon Web Services – Automating Governance on AWS August 2015

Page 23 of 39

 Allow for command line interface (CLI)-based or AWS Service Catalog-

based deployment

 Use a parameters file

 Use IAM policies to restrict the ability of users to delete AWS

CloudFormation stacks

Automating Compliance for EC2 Instances
There are four tools for automating the configuration of EC2 instances at the

operating system and application levels to meet compliance requirements.

Custom AMIs

AWS allows you to create customized AMIs that can be built and hardened for

use by workload owners to further install software and applications.

Building a compliant AMI may requires you to take into account the following:

 Software packages and updates

 Password policies

 SSH keys

 File system permissions/ownership

 File system encryption

 User/group configuration

 Access control settings

 Continuous monitoring tools

 Firewall rules

 Running services

User Data Scripts

You can employ user data to bootstrap EC2 instances to install packages and

perform configuration on launch. Utilize user data to directly manipulate

instance configuration with any of the following tools:

Amazon Web Services – Automating Governance on AWS August 2015

Page 24 of 39

 Cloud-Init directives – Specify configuration parameters in user data

which cloud-init can use to directly modify configuration. An example of a

directive is “Packages,” which can install a list of specific packages on the

instance.

 Shell scripts – Include Bash or PowerShell scripts directly in user data to

run on instance launch. There is a 16 KB raw data limit on user data, which

limits this option.

 External scripts – A user data script can pull down a larger shell script

from an S3 bucket URL or any other location and run this script to further

configure the instance.

Configuration Management Software

Configuration management solutions allow continuous management of instance

configuration. This can automate consistency among instances and make

managing changes easier. Examples of such solutions include:

 Chef

 Puppet

 Ansible

 SaltStack

 AWS OpsWorks

By using these configuration management solutions, you can build scripts and

packages to secure an operating system. These hardening operations can include

modifying user, access, or file system permissions; disabling services; making

firewall changes; and many other operations used to secure a system and reduce

its attack surface.

The following example of a Chef script implements a password age policy:

template '/etc/login.defs' do

source 'login.defs.erb')

mode 0444

owner 'root'

group 'root'

Amazon Web Services – Automating Governance on AWS August 2015

Page 25 of 39

You can design packages of configuration scripts, for example, Puppet modules or

Chef cookbooks, based on specific compliance requirements and apply them to

instances that must meet those requirements.

Containers

Containerization with applications such as Docker14 or Amazon EC2 Container

Service (Amazon ECS)15 allows one or more applications to run independently on

a single instance within an isolated user space.

Figure 7: Containerization

From a compliance perspective, containers can be pre-built with a standardized

and hardened configuration based on the operating system and application.

Development & Management
Using a modular approach and a common structure for templates simplifies

updates and enforces uniform development by those responsible for creating new

use case packages. We recommend using the following elements when

developing and managing AWS CloudFormation template packages that are

architected for compliance.

Outputs

The Output section of a template can include custom information and can be

used to retrieve the ID of generated resources when nested stacks are used. It

variables

(password_max_age: node['auth']['pw_max_age'],

password_min_age: node['auth']['pw_min_age'])

end

Amazon Web Services – Automating Governance on AWS August 2015

Page 26 of 39

can also be used to provide general information that can be viewed from the AWS

CloudFormation console or from the CLI/API describe-stacks call.

The Output sections of template files should include, at minimum, the following

reference information:

 Use case/application type

 Compliance type

 Date created

 Maintained by

Parameters

AWS CloudFormation parameters16 are fields that allow users to specify data to

the template upon launch. Use parameters whenever possible. You can design an

entire set of AWS CloudFormation templates for a common use case by using

highly customized parameters.

For example, most tiered web applications share a similar architecture. For this

type of use case, you can develop a complete four-stack template package so that

multiple web-based applications can easily be deployed with the same template

files by the user specifying parameters for AMIs and other application-specific

resources.

Conditions

AWS CloudFormation allows the use of Conditions17, which must be true for

resources to be created. When used in combination with parameters, conditions

enable you to design templates that make reference architectures flexible and

based on application requirements For example, a condition can be used to

launch an EC2-based database instead of an Amazon Relational Database Service

(Amazon RDS) instance based on input parameters specified by the user, as

shown in the following snippet:

"CreateDBInstance": {

Amazon Web Services – Automating Governance on AWS August 2015

Page 27 of 39

Custom Resources

AWS CloudFormation allows you to create custom resources18, which can be used

to integrate with external processes or third-party providers. Custom resources

can also be designed to invoke AWS Lambda functions, which can provide levels

of automation not available with AWS CloudFormation alone.

Figure 8: Custom Resources

Infrastructure as Code

AWS CloudFormation templates and associated scripts, documents, and

parameter files can be managed just as any application code would be. We

recommend that you use version control repositories such as Git or Subversion

(SVN) to track changes and allow multiple users to efficiently push updates.

Capabilities such as version control, testing, and rapid deployment are possible

with AWS CloudFormation templates just as with any source code. A full

Continuous Integration/Continuous Deployment (CI/CD) solution can be

implemented using additional tools, such as Jenkins.19

"Fn::Not": [

{

"Fn::Equals": [{ "Ref": "DatabaseAmi" },

"none"]

}

]

}

Amazon Web Services – Automating Governance on AWS August 2015

Page 28 of 39

Figure 9: Example of CI/CD in AWS Using AWS CloudFormation

You can store pre-built use case packages in either a source code repository or in

an S3 bucket. This allows provisioning teams and workload owners to easily pull

down the latest versions of these files.

Deployment
To ensure a secure, reliable, and efficient deployment of pre-build template

packages, you should consider implementing several operational practices, as

described in the following sections.

AWS CLI

Although you can use the AWS CloudFormation console to deploy templates from

a web-based interface, there are clear advantages to using the AWS CLI and other

automated methods – especially if the templates require input to many

parameters. The AWS CLI is automatically installed on the Amazon Linux AMI.

You can use the AWS CLI to deploy automated architectures with a single

command from an EC2 Linux instance. Including a parameters file simplifies

inputting template parameters by eliminating the need to manually input data for

each field.

Amazon Web Services – Automating Governance on AWS August 2015

Page 29 of 39

You can use an additional script as a wrapper to simplify the CLI command, or,

alternatively, to directly call the AWS CloudFormation API to create the stack.

Launch EC2 instances into a pre-defined IAM role that allows access only to the

AWS CloudFormation API. To provide “least privilege” within the AWS

CloudFormation service, use additional restrictions.

To launch a template from the AWS CLI:

1. Create an IAM role that allows an EC2 instance to access the AWS

CloudFormation API.

2. Launch an EC2 instance into the IAM role in a VPC (preferably a shared

services VPC).

3. Copy or download the template package to the EC2 instance.

4. Run the AWS CLI aws cloudformation create-stack command to launch the

template stack.

Security

The security of AWS CloudFormation template packages should always be

considered, especially by customers who must adhere to strict compliance

requirements. Source code repositories should be secured to allow write access

only to those responsible for updating packages. In addition, user names,

passwords, and access keys should never be included in user data when

automating deployment of EC2 instances because they are unencrypted plain

text.

It is critical to understand that deleting an AWS CloudFormation stack actually

deletes all underlying resources, effectively destroying all data stored in EC2.

aws cloudformation create-stack --stack-name myStack --template-body

file:///template.json --parameters file:///parameters_file.json --

capabilities

CAPABILITY_IAM

Amazon Web Services – Automating Governance on AWS August 2015

Page 30 of 39

To mitigate the risk of accidental resource deletion, use the following safeguards.

IAM permissions.20 Restrict the ability to delete AWS CloudFormation stacks

to only users, groups, and roles that require that ability. You can write IAM

policies that deny users and groups to which those policies are applied the ability

to delete any stack.

The following is an example of an IAM policy that denies the DeleteStack and

UpdateStack API calls:

Deletion Policy.21 Resources such as S3 buckets and EC2 and RDS instances

support the AWS CloudFormation DeletionPolicy attribute. Use this attribute to

require that resources be retained upon stack deletion, or that a snapshot be

created (if snapshots are supported).

The following is an example of a deletion policy with an S3 bucket AWS

CloudFormation resource:

{

"Version":"2012-10-17",

"Statement":[{

"Effect":"Deny",

"Action":[

"cloudformation:DeleteStack",

"cloudformation:UpdateStack"

],

"Resource":"*”

}]

}

"myS3Bucket" : {

"Type" : "AWS::S3::Bucket",

Amazon Web Services – Automating Governance on AWS August 2015

Page 31 of 39

Auditing

Automating architecture deployment in AWS can help simplify the process of

auditing and accrediting deployed applications. Having a base configuration for

components such as IAM and VPC controls ensures that workload owners are

deploying architectures based on compliance standards.

Security personnel at the customer’s MSO can “sign off” on reusable template

packages that are based on customer security standards and compliance

requirements as compliant.

The security accreditation and auditing process can make use of automation with

the following AWS capabilities:

 Tagging–AWS resources can be queried for common tags. Tags can be

applied at the stack level to all resources that support tagging.

 Template validation–A scripted validation of the configuration can be

tested against the AWS CloudFormation template files prior to deployment.

 SNS notification–A nested stack in a template can be configured to send

notifications about stack events to an Amazon SNS topic. These Amazon

SNS topics can be used to alert individuals, groups, or applications that a

specific template has been deployed in the account.

 Testing deployed resources–Through the AWS API, scripted tests can

be conducted to validate that deployed architectures meet security

requirements. For example, tests can be run to detect if any security group

has open access to certain ports or if there is an internet gateway in a VPC

that should not have one.

 ISV solutions–Third-party solutions for analyzing deployed architectures

are available from AWS Partners. Security control validation can also be

implemented through solutions such as Telos’ Xacta risk management

solution.

"DeletionPolicy" : "Retain"

}

Amazon Web Services – Automating Governance on AWS August 2015

Page 32 of 39

AWS Service Catalog Integration

AWS Service Catalog allows IT administrators to create and manage approved

catalogs of resources, which are called products. IT administrators create

portfolios of one or more products which they can then distribute to AWS end

users and workload owners. End users can access products through a

personalized portal.22

Product – Products can be created to provide specific types of applications or to

address specific use cases, or, alternatively, they can be used to deploy base

resources, such as IAM and VPC configuration, which other resources, such as

EC2 instances, can utilize. Template package deployment can be further

automated and simplified by making the template package an AWS Service

Catalog product.

Portfolios – A portfolio consists of one or more products. Portfolios can include

products for different types of use cases and can be organized by compliance

type.

Permissions – End users and workload owners who are IAM users or members

of IAM groups or roles can be given permission to use specific portfolios based on

the level of access they need and what they need to deploy.

Constraints – Constraints are a granular control applied at a portfolio or

product level that restrict the ways that AWS resources can be deployed.

Constraints can be used to allow templates to deploy all resources at a higher

level of access than a workload owner has through IAM policies.

Tags – Tags can be used to control access to resources or for cost allocation. Tags

are enforced at the portfolio or product level.

AWS Service Catalog allows sharing of portfolios that are created in a common

shared services AWS account. This allows central management of and access to

deployable reference architectures.

Central Management of AWS Service Catalog

Customers with centralized governance models can fully control and manage the

AWS Service Catalog products that workload owners have access to.

Amazon Web Services – Automating Governance on AWS August 2015

Page 33 of 39

Figure 10: Using AWS Service Catalog Constraints

Automating for Governance: High-Level

Steps

Automating a compliant, secure, and reliable architecture that adheres to an

organization’s governance model involves several basic steps. This section

presents a high-level overview.

Prerequisites

Before beginning to develop automated reference architectures based on

compliance requirements, your organization must define the following:

 Cloud strategy and roadmap

 Governance model

 Cloud tasks, roles, and responsibilities

 VPC and account creation strategy

 Security standards and compliance requirements

Amazon Web Services – Automating Governance on AWS August 2015

Page 34 of 39

Automating for compliance will often be part of a larger IT transformation

initiative. Many architectural requirements relate directly to existing governance

and security-related decisions.

Step 1: Define Common Use Cases
Customers must first determine the standard use cases of their workloads. Many

applications deployed on AWS support a common use case. These use cases

share identical or similar base architectures for VPC design, IAM configuration,

and other architectural components.

The following are examples of a few common use cases:

 Web applications – Web applications normally consist of multiple tiers

(proxy/web, application, and database) for hosting web-based applications

accessed by end users. These applications can be designed for scalability

and elasticity when properly architected in AWS. Different VPC

configurations are required depending on whether the application is

intended to be internal facing or accessible from users on the public

Internet.

 Enterprise applications – Enterprise applications are almost always

commercial off-the-shelf (COTS) products that are used widely within an

organization in critical-to-business functions. Examples include Microsoft

SharePoint, Active Directory, PeopleSoft, and Oracle E-Business Suite.

Often, each enterprise application addresses a specific use case with an

architecture that is standardized.

 Data analytics – Applications that analyze large data sets have

architectures that require the deployment of common data analytics

applications and use AWS big data services, such as Amazon Redshift,

Amazon Elastic MapReduce (Amazon EMR), Amazon Kinesis, and Amazon

DynamoDB (DynamoDB).

Amazon Web Services – Automating Governance on AWS August 2015

Page 35 of 39

Step 2: Create and Document Reference

Architectures
A well-designed reference architecture provides clear documentation on how

resources will be used within AWS. Reference architectures should be created in

Visio, PowerPoint, or another platform from which they can be distributed.

Figure 11: Example Reference Architecture in PowerPoint

Step 3: Validate and Document Architecture

Compliance

Accurately documenting how the reference architecture satisfies compliance

requirements can reduce the amount of effort required for a workload owner to

ensure that the architecture being deployed meets compliance requirements.

Compliance documentation may include:

 A security controls implementation matrix (SCTM)

Amazon Web Services – Automating Governance on AWS August 2015

Page 36 of 39

 A system security plan (SSP)

 A concept of operations (ConOps)

Organizations that must follow specific compliance controls should determine

which resources, components, and configurations meet the requirements of each

control. Including this documentation in a packaged deployment reduces the

need to repeat the same compliance analysis for a proposed architecture.

Figure 12: Example of a Security Controls Implementation Matrix Provided by the

Cloud Security Alliance

Step 4: Build Automated Solutions Based on

Architecture
There are many ways to automate infrastructure creation with AWS services and

features. Most commonly, AWS CloudFormation templates are used to automate

deployment and configuration of AWS resources-. Create template packages

using the design guidelines provided in “Automating for Compliance,” earlier in

this whitepaper.

When building templates, determine which configurations are common among

various types of applications and use cases. Properly maintain and update

templates when necessary.

Amazon Web Services – Automating Governance on AWS August 2015

Page 37 of 39

Step 5: Develop an Accreditation and Approval

Process
Existing processes and methods for evaluating systems against compliance

requirements may not apply or may need to be changed for applications in the

cloud. When automating compliance for an entire enterprise, involve security

teams early on so they can provide input and gain a deeper understanding of how

applications will be deployed in AWS.

The accreditation and approval plan for automated deployments should consider

of all of the following:

 The compliance standards that the organization must follow

 The current approval process for applications and infrastructure

 The existing security requirements related to networking, continuous

monitoring, access control, and auditing

 The current (and proposed) tools for security analysis, scanning, and

monitoring

 The hardening requirements for deployed operating systems, if there are

any, and the need for pre-hardened custom images

 The processes and methods used to validate both architecture templates

and deployed configurations

Conclusion

Developing an automated solution for governance and compliance can reduce the

cost, time, and effort to deploy applications in AWS, while minimizing risk and

simplifying architecture design. When this approach is packaged into a reusable

solution, it can decrease the level of effort to produce compliance-related

documentation and allow time normally spent evaluating compliant architectures

to be used to drive the organization’s goals and mission.

Amazon Web Services – Automating Governance on AWS August 2015

Page 38 of 39

Contributors

The following individuals and organizations contributed to this document:

 Mike Dixon, Consultant, AWS Public Sector Sales

 Lou Vecchioni, Senior Consultant, AWS ProServ

 Brett Miller, Senior Consultant, AWS ProServ

 Josh Weatherly, Practice Manager, AWS ProServ

 Andrew McDermott, Senior Compliance Architect, AWS Security

Notes

1 http://www.gartner.com/it-glossary/it-governance/

2 http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf

3 http://d0.awsstatic.com/whitepapers/compliance/aws-architecture-and-

security-recommendations-for-fedramp-compliance.pdf

4 http://iase.disa.mil/cloud_security/Documents/u-

cloud_computing_srg_v1r1_final.pdf

5 http://aws.amazon.com/compliance/hipaa-compliance/

6 http://www.27000.org/iso-27001.htm

7 http://aws.amazon.com/compliance/pci-dss-level-1-faqs/

8

http://media.amazonwebservices.com/AWS_Security_at_Scale_Governance_i

n_AWS.pdf

9 http://aws.amazon.com/partners/managed-service/

10

https://media.amazonwebservices.com/AWS_Security_at_Scale_Governance

_in_AWS.pdf

11 https://github.com/Netflix/aminator

https://www.packer.io/intro/index.html

http://www.gartner.com/it-glossary/it-governance/
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf
http://d0.awsstatic.com/whitepapers/compliance/aws-architecture-and-security-recommendations-for-fedramp-compliance.pdf
http://d0.awsstatic.com/whitepapers/compliance/aws-architecture-and-security-recommendations-for-fedramp-compliance.pdf
http://d0.awsstatic.com/whitepapers/compliance/aws-architecture-and-security-recommendations-for-fedramp-compliance.pdf
http://iase.disa.mil/cloud_security/Documents/u-cloud_computing_srg_v1r1_final.pdf
http://iase.disa.mil/cloud_security/Documents/u-cloud_computing_srg_v1r1_final.pdf
http://iase.disa.mil/cloud_security/Documents/u-cloud_computing_srg_v1r1_final.pdf
http://aws.amazon.com/compliance/hipaa-compliance/
http://www.27000.org/iso-27001.htm
http://aws.amazon.com/compliance/pci-dss-level-1-faqs/
http://media.amazonwebservices.com/AWS_Security_at_Scale_Governance_in_AWS.pdf
http://media.amazonwebservices.com/AWS_Security_at_Scale_Governance_in_AWS.pdf
http://media.amazonwebservices.com/AWS_Security_at_Scale_Governance_in_AWS.pdf
http://aws.amazon.com/partners/managed-service/
https://media.amazonwebservices.com/AWS_Security_at_Scale_Governance_in_AWS.pdf
https://media.amazonwebservices.com/AWS_Security_at_Scale_Governance_in_AWS.pdf
https://github.com/Netflix/aminator
https://www.packer.io/intro/index.html
https://www.packer.io/intro/index.html

Amazon Web Services – Automating Governance on AWS August 2015

Page 39 of 39

12 http://aws.amazon.com/cloudtrail/partners/

13 http://aws.amazon.com/config/

14 https://www.docker.com/

15 http://aws.amazon.com/ecs/

16 http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/paramet ers-
section-structure.html

17 http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditio ns-
section-structure.html

18 http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-

resource-cfn-customresource.html

19 https://wiki.jenkins-ci.org/display/JENKINS/AWS+Cloudformation+Plugin

20 http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-

iam-template.html

21 http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-

attribute-deletionpolicy.html

22 http://aws.amazon.com/servicecatalog/

http://aws.amazon.com/cloudtrail/partners/
http://aws.amazon.com/config/
https://www.docker.com/
https://www.docker.com/
http://aws.amazon.com/ecs/
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cfn-customresource.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cfn-customresource.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cfn-customresource.html
https://wiki.jenkins-ci.org/display/JENKINS/AWS%2BCloudformation%2BPlugin
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-iam-template.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-iam-template.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-iam-template.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-attribute-deletionpolicy.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-attribute-deletionpolicy.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-attribute-deletionpolicy.html
http://aws.amazon.com/servicecatalog/

